Hyperbolic functions - sinh, cosh, tanh, coth, sech, csch
DEFINITION OF HYPERBOLIC FUNCTIONS
Hyperbolic sine of x = sinh x = (ex - e-x)/2Hyperbolic cosine of x = cosh x = (ex + e-x)/2
Hyperbolic tangent of x = tanh x = (ex - e-x)/(ex + e-x)
Hyperbolic cotangent of x = coth x = (ex + e-x)/(ex - e-x)
Hyperbolic secant of x = sech x = 2/(ex + e-x)
Hyperbolic cosecant of x = csch x = 2/(ex - e-x)
RELATIONSHIPS AMONG HYPERBOLIC FUNCTIONS
tanh x = sinh x/cosh xcoth x = 1/tanh x = cosh x/sinh x
sech x = 1/cosh x
csch x = 1/sinh x
cosh2x - sinh2x = 1
sech2x + tanh2x = 1
coth2x - csch2x = 1
FUNCTIONS OF NEGATIVE ARGUMENTS
sinh(-x) = -sinh xcosh(-x) = cosh x
tanh(-x) = -tanh x
csch(-x) = -csch x
sech(-x) = sech x
coth(-x) = -coth x
ADDITION FORMULAS
sinh (x ± y) = sinh x cosh y ± cosh x sinh ycosh (x ± y) = cosh x cosh y ± sinh x sinh y
tanh(x ± y) = (tanh x ± tanh y)/(1 ± tanh x.tanh y)
coth(x ± y) = (coth x coth y ± l)/(coth y ± coth x)
DOUBLE ANGLE FORMULAS
sinh 2x = 2 sinh x cosh xcosh 2x = cosh2x + sinh2x = 2 cosh2x — 1 = 1 + 2 sinh2x
tanh 2x = (2tanh x)/(1 + tanh2x)
HALF ANGLE FORMULAS
sinh x/2 = ± [+ if x > 0, - if x < 0]cosh x/2 =
tanh x/2 = ± [+ if x > 0, - if x < 0]
= <(sinh x)/(cosh x — 1) = (cosh x + 1)/sinh x
MULTIPLE ANGLE FORMULAS
sinh 3x = 3 sinh x + 4 sinh3 xcosh 3x = 4 cosh3 x — 3 cosh x
tanh 3x = (3 tanh x + tanh3 x)/(1 + 3 tanh2x)
sinh 4x = 8 sinh3 x cosh x + 4 sinh x cosh x
cosh 4x = 8 cosh4 x — 8 cosh2 x + 1
tanh 4x = (4 tanh x + 4 tanh3 x)/(1 + 6 tanh2 x + tanh4 x)
POWERS OF HYPERBOLIC FUNCTIONS
sinh2 x = ½cosh 2x — ½cosh2 x = ½cosh 2x + ½
sinh3 x = ¼sinh 3x — ¾sinh x
cosh3 x = ¼\\ cosh 3x + ¾cosh x
sinh4 x = 3/8 - ½cosh 2x + 1/8cosh 4x
cosh4 x = 3/8 + ½cosh 2x + 1/8cosh 4x
SUM, DIFFERENCE AND PRODUCT OF HYPERBOLIC FUNCTIONS
sinh x + sinh y = 2 sinh ½(x + y) cosh ½(x - y)sinh x - sinh y = 2 cosh ½(x + y) sinh ½(x - y)
cosh x + cosh y = 2 cosh ½(x + y) cosh ½(x - y)
cosh x - cosh y = 2 sinh ½(x + y) sinh ½(x — y)
sinh x sinh y = ½(cosh (x + y) - cosh (x - y))
cosh x cosh y = ½(cosh (x + y) + cosh (x — y))
sinh x cosh y = ½(sinh (x + y) + sinh (x - y))
EXPRESSION OF HYPERBOLIC FUNCTIONS IN TERMS OF OTHERS
In the following we assume x > 0. If x < 0 use the appropriate sign as indicated by formulas in the section "Functions of Negative Arguments"sinh x = u | cosh x — u | tanh x = u | coth x = u | sech x = u | esch x = u | |
sinh x | u | u | u/ | l/ | /u | 1/u |
cosh x | u | 1/ | u/ | 1/u | /u | |
tanh x | u/ | /u | u | 1/u | 1/ | |
coth x | /u | u/ | 1/u | u | 1/ | |
sech x | 1/ | 1/u | /u | u | u/ | |
csch x | 1/u | 1/ | /u | u/ | u |
GRAPHS OF HYPERBOLIC FUNCTIONS
y = sinh x
y = cosh x
y = tanh x
y = coth x
y = sech x
y = csch x
INVERSE HYPERBOLIC FUNCTIONS
If x = sinh y, then y = sinh-1 a is called the inverse hyperbolic sine of x. Similarly we define the other inverse hyperbolic functions. The inverse hyperbolic functions are multiple-valued and as in the case of inverse trigonometric functions we restrict ourselves to principal values for which they can be considered as single-valued.The following list shows the principal values [unless otherwise indicated] of the inverse hyperbolic functions expressed in terms of logarithmic functions which are taken as real valued.
sinh-1 x = ln (x +) -∞ < x < ∞
cosh-1 x = ln (x + ) x ≥ 1 [cosh-1 x > 0 is principal value]
tanh-1x = ½ln((1 + x)/(1 - x)) -1 < x < 1
coth-1 x = ½ln((x + 1)/(x - 1)) x > 1 or x < -1
sech-1 x = ln ( 1/x + ) 0 < x ≤ 1 [sech-1 a; > 0 is principal value]
csch-1 x = ln(1/x + ) x ≠ 0
RELATIONS BETWEEN INVERSE HYPERBOLIC FUNCTIONS
csch-1 x = sinh-1 (1/x)sech-1 x = cosh-1 (1/x)
coth-1 x = tanh-1 (1/x)
sinh-1(-x) = -sinh-1x
tanh-1(-x) = -tanh-1x
coth-1 (-x) = -coth-1x
csch-1 (-x) = -csch-1x
GRAPHS OF INVERSE HYPERBOLIC FUNCTIONS
y = sinh-1x
y = cosh-1x
y = tanh-1x
y = coth-1x
y = sech-1x
y = csch-1x
RELATIONSHIP BETWEEN HYPERBOLIC AND TRIGONOMETRIC FUNCTIONS
sin(ix) = i sinh x | cos(ix) = cosh x | tan(ix) = i tanh x |
csc(ix) = -i csch x | sec(ix) = sech x | cot(ix) = -i coth x |
sinh(ix) = i sin x | cosh(ix) = cos x | tanh(ix) = i tan x |
csch(ix) = -i csc x | sech(ix) = sec x | coth(ix) = -i cot x |
PERIODICITY OF HYPERBOLIC FUNCTIONS
In the following k is any integer.sinh (x + 2kπi) = sinh x csch (x + 2kπi) = csch x
cosh (x + 2kπi) = cosh x sech (x + 2kπi) = sech x
tanh (x + kπi) = tanh x coth (x + kπi) = coth x
RELATIONSHIP BETWEEN INVERSE HYPERBOLIC AND INVERSE TRIGONOMETRIC FUNCTIONS
sin-1 (ix) = isinh-1x | sinh-1(ix) = i sin-1x |
cos-1 x = ±i cosh-1 x | cosh-1x = ±i cos-1x |
tan-1(ix) = i tanh-1x | tanh-1(ix) = i tan-1x |
cot-1(ix) = -i coth-1x | coth-1 (ix) = -i cot-1x |
sec-1 x = ±i sech-1x | sech-1 x = ±i sec-1x |
csc-1(ix) = -i csch-1x | csch-1(ix) = -i csc-1x |
No comments:
Post a Comment